Filter Sort
close
Filter By
Company
Nominal Diameter
1 - 9 of 17
990.26 Flanged Process Connection Diaphragm Seal

990.26 Flanged Process Connection Diaphragm Seal

2261

The WIKA 990.26 diaphragm seal is ideally suited for applications with small process connections. Due to the internal diaphragm, low measuring ranges can be realised ” the large diameter of the diaphragm affects a lower deviation at the measuring instrument when the temperature changes. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the upper body of the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be coated. Applications Chemical process industry Petrochemical industry Suitable for corrosive, highly viscous, crystallising or hot pressure media For small flanged process connections
View Details
MBS 1900 Pressure Transmitter

MBS 1900 Pressure Transmitter

5119

The Danfoss MBS 1900 pressure transmitter is designed for use in air and water applications like Booster Pumps and Air Compressors. The semi-flexible pressure transmitter programme covers different output signals, absolute or gauge (relative) versions, measuring ranges from 0…4 bar to 0…25 bar and a wide range of pressure and electrical connections. The enclosure material is stainless steel AISI 316L.
View Details
MBS 3100/3150 Pressure Transmitter

MBS 3100/3150 Pressure Transmitter

5134

The compact ship approved Danfoss MBS 3100, and MBS 3150 pressure transmitters are designed for almost all marine applications. The Danfoss MBS 3150 pressure transmitter with integrated pulse-snubber is suitable in marine applications with severe medium influences like cavitation, liquid hammer or pressure peaks. It offers a reliable pressure measurement, even under harsh environmental conditions. Excellent vibration stability, robust construction, and a high degree of EMC / EMI protection equip the pressure transmitter to meet the most stringent industrial requirements.
View Details
MBS 4510 Pressure Transmitter

MBS 4510 Pressure Transmitter

5151

The high accuracy Danfoss MBS 4510 pressure transmitter with flush diaphragm is designed for use in non-uniform, high viscous or crystallising media within industrial applications. It offers a reliable pressure measurement, even under harsh environmental conditions. The flexible MBS 4510 pressure transmitter covers a 4-20 mA output signal, absolute and gauge (relative) versions, measuring ranges from 0-0.25 to 0-25 bar zero and span adjustment. A rotatable plug connection and a G1A conic pressure connection with a flush mounted diaphragm. Excellent vibration stability, robust construction, and a high degree of EMC/EMI protection equip the pressure transmitter to meet the most stringent industrial requirements.
View Details
VKX15 OEM Flow Switch

VKX15 OEM Flow Switch

7594

The SIKA VKX05 OEM flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VKX05 OEM flow switch is available for various nominal widths and set-point ranges. The SIKA VKX05 OEM flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VK3 Flow Switch

VK3 Flow Switch

7596

The SIKA VK3 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK3 flow switch is available for various nominal widths and set-point ranges. The SIKA VK3 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VK309 Flow Switch

VK309 Flow Switch

7598

The SIKA VK309 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK309 flow switch is available for various nominal widths and set-point ranges. The SIKA VK309 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VK306 Flow Switch

VK306 Flow Switch

7602

The SIKA VK306 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK306 flow switch is available for various nominal widths and set-point ranges. The SIKA VK306 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VKS Flow Switch

VKS Flow Switch

7608

The SIKA VKS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VKS flow switch is available for various nominal widths and set-point ranges. The SIKA VKS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
1 - 9 of 17