close
Categories
Filter By
Company
Connection Type
Pressure Range
- 0...0.6 bar 1
- 0...0.6 bar__0...40 bar 5
- 0...0.6 bar__0...40 bar__PN 16/40 or Class 150/300 1
- 0...1.000 bar 1
- 0...1.000 mbar 1
- 0...1 bar__0...10 bar 1
- 0...1 bar__0...25 bar 1
- 0...1 bar__0...40 bar 1
- 0...10.000 bar 1
- 0...10 bar__0...600 bar 1
- 0...16 bar 1
- 0...25 bar 3
- 0...40 bar 1
- 0...60 bar 4
- 0...100 bar 1
- 0...250 bar 1
- 0...400 bar 2
- 0...600 bar 9
- 0...700 bar 3
- 0...1000 bar 2
- 0...1600 bar 1
- 2...20 bar 1
- 10 bar 1
- 10 bar__6 bar__8 bar 6
- 20 bar 1
- 25 bar__40 bar 2
- 25 mbar 1
- 40...400 mbar 1
- 100 bar 1
- 250 bar 1
- 300 bar 1
- 350...400 bar 2
- -0.2...21 bar 1
- -0.2...400 bar 1
- -0.95...40 bar 1
- -0.95...60 bar 1
- -1...1 bar__0...2.000 bar 1
- -1...1 bar__0...2500 bar 1
- -1...2 bar__0...1000 bar 1
- -1...3 bar__0...700 bar 1
- -1...3 bar__0...1000 bar 1
- -1...10 bar__0...1000 bar 1
- -1...18 bar 1
- -1...60 bar 1
- -1...210 bar 2
- -1...250 bar 1
- -1...400 bar 1
- -1...1000 bar 1
- Corresponding to flange specification 1
- From 400 mbar depending on diameter of diaphragm 1
- PN 10 10
- PN 10 €“ 100; Class 150 - 600 1
- PN 16 8
- PN 25 5
- PN 50 2
From 400 mbar depending on diameter of diaphragm - 350...400 bar
3 items

990.26 Flanged Process Connection Diaphragm Seal
2261
The WIKA 990.26 diaphragm seal is ideally suited for applications with small process connections. Due to the internal diaphragm, low measuring ranges can be realised ” the large diameter of the diaphragm affects a lower deviation at the measuring instrument when the temperature changes. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the upper body of the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be coated. Applications Chemical process industry Petrochemical industry Suitable for corrosive, highly viscous, crystallising or hot pressure media For small flanged process connections
- USD

VZVA Positive Displacement Flow Sensor
7830
SIKA's gearwheel type VZVA positive displacement flow sensor records volume flows of liquids with both high and changing viscosities. The high-precision sensors work according to the displacement principle. The high resolution combined with reliable measurement accuracy makes the sensors especially useful for applications involving the measurement of small and minimal volumes. A very precisely adjusted gear pair within the casing forms the measuring element. The inflowing medium causes the gear pair to rotate. Contactless sensors scan the rotary motion. Since each tooth generates a pulse, this results in a very high resolution. Consequently, even the smallest volumes can be measured or dosed precisely. The measurement unit contains two pick-offs that are circumferentially offset by ¼ of a tooth pitch to generate a two-channel flow-proportional frequency signal. Suitable processing of the signal provides a higher resolution and the option to identify the flow direction. The maximum pressure drop should not exceed 16 bar. This limits the measurement range of high viscosity media (see pressure drop diagrams). The measurement accuracy increases with an increase in viscosity of the media.
- USD

VZGG Positive Displacement Flow Sensor
7835
SIKA™s gearwheel type VZGG positive displacement flow sensor records volume flows of liquids with both high and changing viscosities. The high-precision sensors work according to the displacement principle. The high resolution combined with reliable measurement accuracy makes the sensors especially useful for applications involving the measurement of small and minimal volumes. A very precisely adjusted gear pair within the casing forms the measuring element. The inflowing medium causes the gear pair to rotate. Contactless sensors scan the rotary motion. Since each tooth generates a pulse, this results in a very high resolution. Consequently, even the smallest volumes can be measured or dosed precisely. The measurement unit contains two pick-offs that are circumferentially offset by ¼ of a tooth pitch to generate a two-channel flow-proportional frequency signal. Suitable processing of the signal provides a higher resolution and the option to identify the flow direction. The maximum pressure drop should not exceed 16 bar. This limits the measurement range of high viscosity media (see pressure drop diagrams). The measurement accuracy increases with an increase in viscosity of the media.
- USD
1 - 3 of 3
1