close
Filter By
Company
Accuracy
Ambient Temperature
Connection Type
Flow Rate (l/min)
Medium Temperature
Pressure Range
- 0...0.6 bar 1
- 0...0.6 bar__0...40 bar 5
- 0...0.6 bar__0...40 bar__PN 16/40 or Class 150/300 1
- 0...1.000 bar 1
- 0...1.000 mbar 1
- 0...1 bar__0...10 bar 1
- 0...1 bar__0...25 bar 1
- 0...1 bar__0...40 bar 1
- 0...10.000 bar 1
- 0...10 bar__0...600 bar 1
- 0...16 bar 1
- 0...25 bar 3
- 0...40 bar 1
- 0...60 bar 4
- 0...100 bar 1
- 0...250 bar 1
- 0...400 bar 2
- 0...600 bar 9
- 0...700 bar 3
- 0...1000 bar 2
- 0...1600 bar 1
- 2...20 bar 1
- 10 bar 1
- 10 bar__6 bar__8 bar 6
- 20 bar 1
- 25 bar__40 bar 2
- 25 mbar 1
- 40...400 mbar 1
- 100 bar 1
- 250 bar 1
- 300 bar 1
- 350...400 bar 2
- -0.2...21 bar 1
- -0.2...400 bar 1
- -0.95...40 bar 1
- -0.95...60 bar 1
- -1...1 bar__0...2.000 bar 1
- -1...1 bar__0...2500 bar 1
- -1...2 bar__0...1000 bar 1
- -1...3 bar__0...700 bar 1
- -1...3 bar__0...1000 bar 1
- -1...10 bar__0...1000 bar 1
- -1...18 bar 1
- -1...60 bar 1
- -1...210 bar 2
- -1...250 bar 1
- -1...400 bar 1
- -1...1000 bar 1
- Corresponding to flange specification 1
- From 400 mbar depending on diameter of diaphragm 1
- PN 10 10
- PN 10 €“ 100; Class 150 - 600 1
- PN 16 8
- PN 25 5
- PN 50 2
Switching Function
300 bar, -0.2...21 bar - PN 10
12 items

KP Pressure Switch
5288
The Danfoss KP pressure switches are used for regulating, monitoring and alarm systems in the industry. The KP pressure switches provide automatic limit protection or manual reset limit protection for pressure systems. The KP switches can be used with steam, air, gaseous and liquid media. The pressure switches are fitted with a single-pole changeover switch (SPDT). The position of the switch depends on the setting of the pressure switch and the pressure in the connector. Available types: KP 34 pressure switch KP 35 pressure switch KP 36 pressure switch KP 37 pressure switch KP 44 pressure switch
- USD

VKX15 OEM Flow Switch
7594
The SIKA VKX05 OEM flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VKX05 OEM flow switch is available for various nominal widths and set-point ranges. The SIKA VKX05 OEM flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VK3 Flow Switch
7596
The SIKA VK3 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK3 flow switch is available for various nominal widths and set-point ranges. The SIKA VK3 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VK309 Flow Switch
7598
The SIKA VK309 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK309 flow switch is available for various nominal widths and set-point ranges. The SIKA VK309 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VK306 Flow Switch
7602
The SIKA VK306 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK306 flow switch is available for various nominal widths and set-point ranges. The SIKA VK306 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VKS Flow Switch
7608
The SIKA VKS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VKS flow switch is available for various nominal widths and set-point ranges. The SIKA VKS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VTH 40 Turbine Flow Sensor
7805
The SIKA VTH 40 turbine flow sensor is made for flow measurement or dosing applications for liquids. Because of the very compact design, the extensive measuring range and the convincing precision of measurements, almost unlimited applications are possible. The sturdy bearing materials – sapphire and tungsten carbide – also guarantee an exceptionally long endurance. The liquid flowing into the SIKA VTH 40 turbine flow sensor is split into individual jets by the guiding blade. These jets hit the rotor evenly from different directions, setting the rotor in motion. The rotation speed of the rotor is then converted to an electrical pulse signal (frequency): The rotor is fitted with magnets and a Hall effect sensor detects the rotation of the rotor. A flow-proportional frequency signal (square-wave signal) is made available. The construction of the guiding blade and rotor enables to realize the very low start-up flow values.
- USD

VTH 25 Turbine Flow Sensor
7809
The SIKA VTH 25 turbine flow sensor is made for flow measurement or dosing applications for liquids. Because of the very compact design, the extensive measuring range and the convincing precision of measurements, almost unlimited applications are possible. The sturdy bearing materials – sapphire and tungsten carbide – also guarantee an exceptionally long endurance. The liquid flowing into the SIKA VTH 25 turbine flow sensor is split into individual jets by the guiding blade. These jets hit the rotor evenly from different directions, setting the rotor in motion. The rotation speed of the rotor is then converted to an electrical pulse signal (frequency): The rotor is fitted with magnets and a Hall effect sensor detects the rotation of the rotor. A flow-proportional frequency signal (square-wave signal) is made available. The construction of the guiding blade and rotor enables to realize the very low start-up flow values.
- USD

VTI 15 Turbine Flow Sensor
7819
The SIKA VTI 15 turbine flow sensor is made for flow measurement or dosing applications for liquids. Because of the very compact design, the extensive measuring range and the convincing precision of measurements, almost unlimited applications are possible. The sturdy bearing materials – sapphire and tungsten carbide – also guarantee an exceptionally long endurance. The liquid flowing into the SIKA VTI 15 turbine flow sensor is split into individual jets by the guiding blade. These jets hit the rotor evenly from different directions, setting the rotor in motion. The rotation speed of the rotor is then converted to an electrical pulse signal (frequency): The rotor is fitted with magnets and a Hall effect sensor detects the rotation of the rotor. A flow-proportional frequency signal (square-wave signal) is made available. The construction of the guiding blade and rotor enables to realize the very low start-up flow values.
- USD