Filter Sort
close
Filter By
Company
Ambient Temperature
Connection Type
Temperature Range
1 - 9 of 11
990.31 Threaded Connection Diaphragm Seal

990.31 Threaded Connection Diaphragm Seal

3243

The WIKA 990.31 diaphragm seal with threaded connection in a plastic version is suitable for versatile application areas in the water supply and wastewater treatment industries. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection or a flexible capillary. The WIKA 990.31 diaphragm seal is used successfully in chemical plant construction, electroplating and wastewater treatment applications.
View Details
MBS 5100/5150 Pressure Transmitter

MBS 5100/5150 Pressure Transmitter

5154

The ship approved high accuracy Danfoss MBS 5100 and MBS 5150 block pressure transmitter is designed for use in almost all marine applications. The Danfoss MBS 5150 pressure transmitter with integrated pulse snubber is designed for use in marine applications with severe medium influences like cavitation, liquid hammer or pressure peaks and offers a reliable pressure measurement, even under harsh environmental conditions. The transmitters can be easily mounted directly on the MBV 5000 block test valve, or the threaded pressure connection can be used. The flexible pressure transmitter programme covers a 4 “ 20 mA output signal, absolute or gauge (relative) versions, measuring ranges from 0…1 to 0…400 bar with zero and span adjustment. Excellent vibration stability, robust construction, and a high degree of EMC / EMI protection equip the pressure transmitter to meet the most stringent industrial requirements.
View Details
MBS 8200/8250 Pressure Transmitter

MBS 8200/8250 Pressure Transmitter

5157

The Danfoss MBS 8200 pressure transmitters is developed to withstand the pressure pulsations and vibrations known in wind turbine applications. A new technology combining piezo resistive sensor element and programmable gain amplifiers makes the MBS 8200 the obvious choice for applications demanding the highest accuracy and insensitiveness against temperature variations. Further, this technology enhances functional safety by limiting the output signal at excess pressure conditions. It allows excellent sink/source capabilities. It leaves the pressure transmitters unaffected by electromagnetic fields up to 100 V/m. The Danfoss MBS 8250 pressure transmitter with integrated pulse-snubber is designed for use in hydraulic applications with severe media influences like cavitation, liquid hammer or pressure peaks and offers a reliable pressure measurement, even under harsh environmental conditions.
View Details
CS Pressure Switch

CS Pressure Switch

5294

The Danfoss CS pressure switch series has a built-in pressure operated, three-pole switch. The contact position of which depends on the pressure in the connector and the range setting and adjustable differential. The Danfoss CS pressure switches are fitted with a manual switch that will lock the contact system in the open position independently of the pressure in the system. Pressure switches with relief valve are used in compressed air systems where pressure relief on the compressor piston before the start is required. The CS is suited for an automatic start and stop of air compressors and water boosters.
View Details
MBC5000/5100 Pressure Switch

MBC5000/5100 Pressure Switch

5297

The Danfoss MBC5000 pressure switch and Danfoss MBC5100 pressure switch are used in marine applications where space and reliability are essential features. According to their block design, the Danfoss MBC 5000 and MBC 5100 are compact pressure switches designed to survive in the harsh conditions known from machine rooms onboard ships. The Danfoss MBC pressure switches have a high vibration resistance and feature all commonly marine approvals. The fixed but low differential guarantees accurate monitoring of critical pressures. In addition, MBV test valves can be delivered as a standard option for MBC pressure switches.
View Details
VHS Flow Switch

VHS Flow Switch

7589

The SIKA VHS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS flow switch is available for various nominal widths and set-point ranges. The SIKA VHS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VHS09 Flow Switch

VHS09 Flow Switch

7600

The SIKA VHS09 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS09 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS09 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VHS06 Flow Switch

VHS06 Flow Switch

7604

The SIKA VHS06 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS06 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS06 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VH0 Micro Flow Switch

VH0 Micro Flow Switch

7606

The SIKA VH0 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VH0 flow switch is available for various nominal widths and set-point ranges. The SIKA VH0 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks. Microswitch A microswitch used as a switching element allows a higher electrical switching capacity than a reed switch. The resetting force required by the paddle system is produced by a leaf spring.
View Details
1 - 9 of 11