Filter Sort
close
Filter By
Company
Ambient Temperature
Connection Type
Nominal Diameter
Temperature Range
1 - 9 of 15
990.10 Threaded Connection Diaphragm Seal

990.10 Threaded Connection Diaphragm Seal

1522

The WIKA 990.10 diaphragm seal with threaded connection in threaded design is suitable for versatile application areas. A replacement of the lower body is possible without modifications on the diaphragm seal system. With this diaphragm seal, high pressure ranges up to 250 bar can be covered. Compared to the WIKA 990.40 diaphragm seal, higher pressure ranges can be covered (smaller diameter of the diaphragm). Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the upper body of the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be coated.    
View Details
990.15 Flanged Process Connection Diaphragm Seal

990.15 Flanged Process Connection Diaphragm Seal

2282

Together with a block flange or a saddle flange, the WIKA 990.15 diaphragm seal forms a perfectly matched system. Through the process connection via block flanges or saddle flanges, compact assemblies can be optimally realised at the measuring point. Depending on customer requirements, the model 990.15 can be subsequently integrated into a process using the accessory models 910.19, 910.20 and 910.23. The process connection is designed as a flange connection. The measuring instrument is in a vertical position. Applications Specifically for connection with block flange or saddle flange and to combine with bourdon tube pressure gauges Suitable for corrosive, contaminated, hot or viscous pressure media Chemical and petrochemical industry
View Details
990.24 Sterile Connection Diaphragm Seal

990.24 Sterile Connection Diaphragm Seal

2294

Due to their hygienic process connection, the WIKA 990.24 sterile connection diaphragm seals are particularly well suited for food production. With this diaphragm seal, pressure measuring instruments can be integrated, dead-space free, into a pipeline using a VARINLINE® access unit or in tanks using a connecting flange for VARINLINE® access units. The diaphragm seals can withstand the cleaning vapour temperatures occurring in the CIP and SIP processes and thus ensure a sterile connection between the medium to be measured and the diaphragm seal. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the upper body of the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be electropolished.
View Details
KP Pressure Switch

KP Pressure Switch

5288

The Danfoss KP pressure switches are used for regulating, monitoring and alarm systems in the industry. The KP pressure switches provide automatic limit protection or manual reset limit protection for pressure systems. The KP switches can be used with steam, air, gaseous and liquid media. The pressure switches are fitted with a single-pole changeover switch (SPDT). The position of the switch depends on the setting of the pressure switch and the pressure in the connector. Available types: KP 34 pressure switch KP 35 pressure switch KP 36 pressure switch KP 37 pressure switch KP 44 pressure switch
View Details
MBC5000/5100 Pressure Switch

MBC5000/5100 Pressure Switch

5297

The Danfoss MBC5000 pressure switch and Danfoss MBC5100 pressure switch are used in marine applications where space and reliability are essential features. According to their block design, the Danfoss MBC 5000 and MBC 5100 are compact pressure switches designed to survive in the harsh conditions known from machine rooms onboard ships. The Danfoss MBC pressure switches have a high vibration resistance and feature all commonly marine approvals. The fixed but low differential guarantees accurate monitoring of critical pressures. In addition, MBV test valves can be delivered as a standard option for MBC pressure switches.
View Details
VKX15 OEM Flow Switch

VKX15 OEM Flow Switch

7594

The SIKA VKX05 OEM flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VKX05 OEM flow switch is available for various nominal widths and set-point ranges. The SIKA VKX05 OEM flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VK3 Flow Switch

VK3 Flow Switch

7596

The SIKA VK3 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK3 flow switch is available for various nominal widths and set-point ranges. The SIKA VK3 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VK309 Flow Switch

VK309 Flow Switch

7598

The SIKA VK309 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK309 flow switch is available for various nominal widths and set-point ranges. The SIKA VK309 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VK306 Flow Switch

VK306 Flow Switch

7602

The SIKA VK306 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK306 flow switch is available for various nominal widths and set-point ranges. The SIKA VK306 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
1 - 9 of 15