Filter Sort
close
1 - 3 of 3
990.40 Threaded Connection Diaphragm Seal

990.40 Threaded Connection Diaphragm Seal

2249

The WIKA 990.40 diaphragm seal with threaded connection in threaded design is suitable for versatile application areas. A replacement of the lower body is possible without modifications on the diaphragm seal system. With this diaphragm seal, low-pressure ranges can be covered ” the large diameter of the diaphragm affects a lower deviation at the measuring instrument when the temperature changes. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the upper body of the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be coated.
View Details
100.0x / 100.1x Bimetall-Thermomanometer

100.0x / 100.1x Bimetall-Thermomanometer

3298

The WIKA 100.1, 100.2, 100.10 and 100.12 thermomanometer with a bimetal system is fitted directly at the measuring point via a stem. The valve allows the measuring instrument to be unscrewed without having to empty the heating system first. Due to the combination of a pressure gauge and a bimetal thermometer the instrument can be used flexibly in a wide variety of applications. The WIKA thermomanometer with bimetal system is fitted directly at the measuring point via a stem. The valve allows the measuring instrument to be unscrewed without having to empty the heating system first. Due to the combination of a pressure gauge and a bimetal thermometer the instrument can be used flexibly in a wide variety of applications
View Details
VH780 Flow Switch

VH780 Flow Switch

7590

The SIKA VH780 flow switch monitors the flow of low-viscosity media in pipes. The SIKA VH780 offers a reliable solution for ensuring the minimum flow rate and thereby protecting high-quality systems and installations from damages. These flow switches work based on the well- established mechanical operating principles. Thanks to the different paddle lengths, the switch points of the paddle flow switches can be configured for a wide switching range. The flowing medium hits the plate secured to the end of a paddle. The resulting dynamic pressure causes the paddle to travel. This, in turn, causes the actuation of a micro switch. The flowing medium hits the plate secured to the end of a paddle. The resulting dynamic pressure causes the paddle to travel. This, in turn, causes the actuation of a micro switch.
View Details
1 - 3 of 3
1