Filter Sort
close
1 - 5 of 5
990.10 Threaded Connection Diaphragm Seal

990.10 Threaded Connection Diaphragm Seal

1522

The WIKA 990.10 diaphragm seal with threaded connection in threaded design is suitable for versatile application areas. A replacement of the lower body is possible without modifications on the diaphragm seal system. With this diaphragm seal, high pressure ranges up to 250 bar can be covered. Compared to the WIKA 990.40 diaphragm seal, higher pressure ranges can be covered (smaller diameter of the diaphragm). Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the upper body of the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be coated.    
View Details
100.0x / 100.1x Bimetall-Thermomanometer

100.0x / 100.1x Bimetall-Thermomanometer

3298

The WIKA 100.1, 100.2, 100.10 and 100.12 thermomanometer with a bimetal system is fitted directly at the measuring point via a stem. The valve allows the measuring instrument to be unscrewed without having to empty the heating system first. Due to the combination of a pressure gauge and a bimetal thermometer the instrument can be used flexibly in a wide variety of applications. The WIKA thermomanometer with bimetal system is fitted directly at the measuring point via a stem. The valve allows the measuring instrument to be unscrewed without having to empty the heating system first. Due to the combination of a pressure gauge and a bimetal thermometer the instrument can be used flexibly in a wide variety of applications
View Details
D-Ex Digital Pressure Gauge

D-Ex Digital Pressure Gauge

4877

The SIKA D-Ex digital pressure gauge is suitable for both stationary and mobile measurement and display of pressure. The SIKA D-Ex digital pressure gauge can be used as a reference to explain the checking, adjustment and calibration of other pressure measurement devices directly on-site. High accuracy in the signal acquisition is achieved by using high-performance measuring cells with electronic linearisation of the characteristic curve. Suitable instruments are available for a wide variety of measurement tasks. Ease of use is assured by innovative design and advanced technology. All essential functions for everyday use can be selected conveniently at the press of a button. Excellent protection against dust and moisture is provided by a membrane keypad or rubber buttons. Integrated supplementary functions make our digital pressure gauges true all-rounders. Tare / Zero-Function User-defined zero point setting at the push of a button makes offset adjustment easy and eliminates the need for tedious mechanical adjustment. Single-point adjustment allows the linear characteristic curve to be shifted in positive or negative direction over the entire measuring range. Selectable pressure units Another feature is the large selection of pressure units. Up to 6 different units are possible “ far more than any complicated dual-scale or multi-scale gauge can offer. The required display unit is selected directly on the digital pressure gauge and is indicated on display. No conversion necessary; the desired value can be read directly. Min / Max Displays and Peak function Experience shows that excess pressure and pressure peaks significantly higher than normal operating pressure occur at some measuring points. Min / max displays and fast peak value measurement cycles in digital pressure gauges assist in system analysis and allow peak values to be determined. This allows incorrect readings and violations of range limits to be detected and helps avoid damage to pressure systems. Preventive service is often less expensive than repairing or replacing defective instruments.
View Details
VZVA Positive Displacement Flow Sensor

VZVA Positive Displacement Flow Sensor

7830

SIKA's gearwheel type VZVA positive displacement flow sensor records volume flows of liquids with both high and changing viscosities. The high-precision sensors work according to the displacement principle. The high resolution combined with reliable measurement accuracy makes the sensors especially useful for applications involving the measurement of small and minimal volumes. A very precisely adjusted gear pair within the casing forms the measuring element. The inflowing medium causes the gear pair to rotate. Contactless sensors scan the rotary motion. Since each tooth generates a pulse, this results in a very high resolution. Consequently, even the smallest volumes can be measured or dosed precisely. The measurement unit contains two pick-offs that are circumferentially offset by ¼ of a tooth pitch to generate a two-channel flow-proportional frequency signal. Suitable processing of the signal provides a higher resolution and the option to identify the flow direction. The maximum pressure drop should not exceed 16 bar. This limits the measurement range of high viscosity media (see pressure drop diagrams). The measurement accuracy increases with an increase in viscosity of the media.
View Details
VZGG Positive Displacement Flow Sensor

VZGG Positive Displacement Flow Sensor

7835

SIKA™s gearwheel type VZGG positive displacement flow sensor records volume flows of liquids with both high and changing viscosities. The high-precision sensors work according to the displacement principle. The high resolution combined with reliable measurement accuracy makes the sensors especially useful for applications involving the measurement of small and minimal volumes. A very precisely adjusted gear pair within the casing forms the measuring element. The inflowing medium causes the gear pair to rotate. Contactless sensors scan the rotary motion. Since each tooth generates a pulse, this results in a very high resolution. Consequently, even the smallest volumes can be measured or dosed precisely. The measurement unit contains two pick-offs that are circumferentially offset by ¼ of a tooth pitch to generate a two-channel flow-proportional frequency signal. Suitable processing of the signal provides a higher resolution and the option to identify the flow direction. The maximum pressure drop should not exceed 16 bar. This limits the measurement range of high viscosity media (see pressure drop diagrams). The measurement accuracy increases with an increase in viscosity of the media.
View Details
1 - 5 of 5
1