close
Categories
Filter By
Company
Ambient Temperature
Approvals
Measuring range
Medium Temperature
Pressure Range
- 0...0.6 bar 1
- 0...0.6 bar__0...40 bar 5
- 0...0.6 bar__0...40 bar__PN 16/40 or Class 150/300 1
- 0...1.000 bar 1
- 0...1.000 mbar 1
- 0...1 bar__0...10 bar 1
- 0...1 bar__0...25 bar 1
- 0...1 bar__0...40 bar 1
- 0...10.000 bar 1
- 0...10 bar__0...600 bar 1
- 0...16 bar 1
- 0...25 bar 3
- 0...40 bar 1
- 0...60 bar 4
- 0...100 bar 1
- 0...250 bar 1
- 0...400 bar 2
- 0...600 bar 9
- 0...700 bar 3
- 0...1000 bar 2
- 0...1600 bar 1
- 2...20 bar 1
- 10 bar 1
- 10 bar__6 bar__8 bar 6
- 20 bar 1
- 25 bar__40 bar 2
- 25 mbar 1
- 40...400 mbar 1
- 100 bar 1
- 250 bar 1
- 300 bar 1
- 350...400 bar 2
- -0.2...21 bar 1
- -0.2...400 bar 1
- -0.95...40 bar 1
- -0.95...60 bar 1
- -1...1 bar__0...2.000 bar 1
- -1...1 bar__0...2500 bar 1
- -1...2 bar__0...1000 bar 1
- -1...3 bar__0...700 bar 1
- -1...3 bar__0...1000 bar 1
- -1...10 bar__0...1000 bar 1
- -1...18 bar 1
- -1...60 bar 1
- -1...210 bar 2
- -1...250 bar 1
- -1...400 bar 1
- -1...1000 bar 1
- Corresponding to flange specification 1
- From 400 mbar depending on diameter of diaphragm 1
- PN 10 10
- PN 10 €“ 100; Class 150 - 600 1
- PN 16 8
- PN 25 5
- PN 50 2
Switching Function
Temperature Range
0...100 bar, -1...18 bar, 0...60 bar - PN 25
11 items

990.40 Threaded Connection Diaphragm Seal
2249
The WIKA 990.40 diaphragm seal with threaded connection in threaded design is suitable for versatile application areas. A replacement of the lower body is possible without modifications on the diaphragm seal system. With this diaphragm seal, low-pressure ranges can be covered ” the large diameter of the diaphragm affects a lower deviation at the measuring instrument when the temperature changes. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the upper body of the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be coated.
- USD

CAS Pressure Switch & Thermostat
2359
In the Danfoss CAS pressure switches and thermostat series, special attention has been given to meeting demands for a high level of enclosure, low differential, robust, compact construction and resistance to shock and vibration. The Danfoss CAS series covers most outdoor as well as indoor application requirements. CAS pressure switches are suitable for use in alarm and regulation systems in factories, diesel plant, compressors, power stations and onboard ships.
- USD

KPS Pressure Switch
2362
In the Danfoss KPS switches series, special attention has been given to meeting important demands for a high level of enclosure, robustness, compact construction and resistance to shock and vibration. The Danfoss KPS pressure switch covers most outdoor as well as indoor application requirements, and are suitable for use in alarm and regulation systems in factories, diesel plant, compressors, power station and onboard ships.
- USD

EXPD 920/924/932 Differential Pressostat
3989
The Trafag EXPD 920/924/932 ex differential pressostat electromechanical pressure switches provide high vibration resistance and switch point precision in combination with an extremely robust and durable design. This results in switches that can be operated for decades without requiring maintenance, even under harsh conditions. Various designs with bellows, membrane and piston sensors cover a wide variety of pressure ranges, media and load profiles for many different applications.
- USD

MBS 4010 Pressure Transmitter
5139
The Danfoss MBS 4010 pressure transmitter with the optional flush diaphragm is designed for use in almost all industrial applications with non-uniform, high viscous or crystallising mediums, and offers a reliable pressure measurement, even under harsh environmental conditions. A robust design, excellent vibration stability and a high degree of EMC / EMI protection equip the pressure transmitter to meet the most stringent industrial requirements.
- USD

KPS Pressure Switch & Thermostat
5306
The Danfoss KPS thermostat and pressure switch series consists of a series of pressure and temperature controlled switches. In the Danfoss KPS series, special attention has been given to meeting demands for a high level of enclosure, robust and compact construction, and resistance to shock and vibration. For the Danfoss KPS pressure switches, the position of the contacts depends on the pressure in the inlet connection and the set scale value. For KPS thermostats, the position of the contacts depends on the temperature of the sensor and the fixed scale value. The series covers most outdoor and indoor application requirements and is suitable for use in monitoring alarm and control systems in factories, diesel plants, compressors, power stations, and board ships. Available types: Danfoss KPS 76 Pressure Switch and Thermostat Danfoss KPS 77 Pressure Switch and Thermostat Danfoss KPS 79 Pressure Switch and Thermostat Danfoss KPS 80 Pressure Switch and Thermostat Danfoss KPS 81 Pressure Switch and Thermostat Danfoss KPS 83 Pressure Switch and Thermostat
- USD

VHS Flow Switch
7589
The SIKA VHS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS flow switch is available for various nominal widths and set-point ranges. The SIKA VHS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS09 Flow Switch
7600
The SIKA VHS09 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS09 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS09 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS06 Flow Switch
7604
The SIKA VHS06 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS06 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS06 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD