close
Categories
Filter By
Company
Accuracy
Connection Type
Material Spec
Pressure Range
- 0...0.6 bar 1
- 0...0.6 bar__0...40 bar 5
- 0...0.6 bar__0...40 bar__PN 16/40 or Class 150/300 1
- 0...1.000 bar 1
- 0...1.000 mbar 1
- 0...1 bar__0...10 bar 1
- 0...1 bar__0...25 bar 1
- 0...1 bar__0...40 bar 1
- 0...10.000 bar 1
- 0...10 bar__0...600 bar 1
- 0...16 bar 1
- 0...25 bar 3
- 0...40 bar 1
- 0...60 bar 4
- 0...100 bar 1
- 0...250 bar 1
- 0...400 bar 2
- 0...600 bar 9
- 0...700 bar 3
- 0...1000 bar 2
- 0...1600 bar 1
- 2...20 bar 1
- 10 bar 1
- 10 bar__6 bar__8 bar 6
- 20 bar 1
- 25 bar__40 bar 2
- 25 mbar 1
- 40...400 mbar 1
- 100 bar 1
- 250 bar 1
- 300 bar 1
- 350...400 bar 2
- -0.2...21 bar 1
- -0.2...400 bar 1
- -0.95...40 bar 1
- -0.95...60 bar 1
- -1...1 bar__0...2.000 bar 1
- -1...1 bar__0...2500 bar 1
- -1...2 bar__0...1000 bar 1
- -1...3 bar__0...700 bar 1
- -1...3 bar__0...1000 bar 1
- -1...10 bar__0...1000 bar 1
- -1...18 bar 1
- -1...60 bar 1
- -1...210 bar 2
- -1...250 bar 1
- -1...400 bar 1
- -1...1000 bar 1
- Corresponding to flange specification 1
- From 400 mbar depending on diameter of diaphragm 1
- PN 10 10
- PN 10 €“ 100; Class 150 - 600 1
- PN 16 8
- PN 25 5
- PN 50 2
0...1 bar__0...40 bar, 0...25 bar - 350...400 bar
6 items

990.17 Sterile Connection Diaphragm Seal
2297
Thanks to its flush process connection, the WIKA 990.17 diaphragm seal is optimally suited for installation in storage tanks. With a suitable welding flange, this diaphragm seal can be integrated into any type of tank or vessel. Level measurement with diaphragm seals also works with media that, due to the process, are under pressure and have high or low viscosity. The WIKA 990.17 diaphragm seal is particularly suitable for CIP cleaning processes as it meets the requirements for elevated temperatures and chemical resistance to cleaning solutions. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be electropolished.
- USD

MBS 1900 Pressure Transmitter
5119
The Danfoss MBS 1900 pressure transmitter is designed for use in air and water applications like Booster Pumps and Air Compressors. The semi-flexible pressure transmitter programme covers different output signals, absolute or gauge (relative) versions, measuring ranges from 0…4 bar to 0…25 bar and a wide range of pressure and electrical connections. The enclosure material is stainless steel AISI 316L.
- USD

MBS 3100/3150 Pressure Transmitter
5134
The compact ship approved Danfoss MBS 3100, and MBS 3150 pressure transmitters are designed for almost all marine applications. The Danfoss MBS 3150 pressure transmitter with integrated pulse-snubber is suitable in marine applications with severe medium influences like cavitation, liquid hammer or pressure peaks. It offers a reliable pressure measurement, even under harsh environmental conditions. Excellent vibration stability, robust construction, and a high degree of EMC / EMI protection equip the pressure transmitter to meet the most stringent industrial requirements.
- USD

MBS 4510 Pressure Transmitter
5151
The high accuracy Danfoss MBS 4510 pressure transmitter with flush diaphragm is designed for use in non-uniform, high viscous or crystallising media within industrial applications. It offers a reliable pressure measurement, even under harsh environmental conditions. The flexible MBS 4510 pressure transmitter covers a 4-20 mA output signal, absolute and gauge (relative) versions, measuring ranges from 0-0.25 to 0-25 bar zero and span adjustment. A rotatable plug connection and a G1A conic pressure connection with a flush mounted diaphragm. Excellent vibration stability, robust construction, and a high degree of EMC/EMI protection equip the pressure transmitter to meet the most stringent industrial requirements.
- USD

VZVA Positive Displacement Flow Sensor
7830
SIKA's gearwheel type VZVA positive displacement flow sensor records volume flows of liquids with both high and changing viscosities. The high-precision sensors work according to the displacement principle. The high resolution combined with reliable measurement accuracy makes the sensors especially useful for applications involving the measurement of small and minimal volumes. A very precisely adjusted gear pair within the casing forms the measuring element. The inflowing medium causes the gear pair to rotate. Contactless sensors scan the rotary motion. Since each tooth generates a pulse, this results in a very high resolution. Consequently, even the smallest volumes can be measured or dosed precisely. The measurement unit contains two pick-offs that are circumferentially offset by ¼ of a tooth pitch to generate a two-channel flow-proportional frequency signal. Suitable processing of the signal provides a higher resolution and the option to identify the flow direction. The maximum pressure drop should not exceed 16 bar. This limits the measurement range of high viscosity media (see pressure drop diagrams). The measurement accuracy increases with an increase in viscosity of the media.
- USD

VZGG Positive Displacement Flow Sensor
7835
SIKA™s gearwheel type VZGG positive displacement flow sensor records volume flows of liquids with both high and changing viscosities. The high-precision sensors work according to the displacement principle. The high resolution combined with reliable measurement accuracy makes the sensors especially useful for applications involving the measurement of small and minimal volumes. A very precisely adjusted gear pair within the casing forms the measuring element. The inflowing medium causes the gear pair to rotate. Contactless sensors scan the rotary motion. Since each tooth generates a pulse, this results in a very high resolution. Consequently, even the smallest volumes can be measured or dosed precisely. The measurement unit contains two pick-offs that are circumferentially offset by ¼ of a tooth pitch to generate a two-channel flow-proportional frequency signal. Suitable processing of the signal provides a higher resolution and the option to identify the flow direction. The maximum pressure drop should not exceed 16 bar. This limits the measurement range of high viscosity media (see pressure drop diagrams). The measurement accuracy increases with an increase in viscosity of the media.
- USD
1 - 6 of 6
1