Filter Sort
close
1 - 9 of 11
990.24 Sterile Connection Diaphragm Seal

990.24 Sterile Connection Diaphragm Seal

2294

Due to their hygienic process connection, the WIKA 990.24 sterile connection diaphragm seals are particularly well suited for food production. With this diaphragm seal, pressure measuring instruments can be integrated, dead-space free, into a pipeline using a VARINLINE® access unit or in tanks using a connecting flange for VARINLINE® access units. The diaphragm seals can withstand the cleaning vapour temperatures occurring in the CIP and SIP processes and thus ensure a sterile connection between the medium to be measured and the diaphragm seal. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the upper body of the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be electropolished.
View Details
990.17 Sterile Connection Diaphragm Seal

990.17 Sterile Connection Diaphragm Seal

2297

Thanks to its flush process connection, the WIKA 990.17 diaphragm seal is optimally suited for installation in storage tanks. With a suitable welding flange, this diaphragm seal can be integrated into any type of tank or vessel. Level measurement with diaphragm seals also works with media that, due to the process, are under pressure and have high or low viscosity. The WIKA 990.17 diaphragm seal is particularly suitable for CIP cleaning processes as it meets the requirements for elevated temperatures and chemical resistance to cleaning solutions. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the diaphragm seal and the wetted parts can be made of identical or different materials. The wetted parts can, as an alternative, be electropolished.
View Details
CPC4000 Pressure Controller

CPC4000 Pressure Controller

2693

The WIKA CPC4000 industrial pressure controller offers a broad pressure range from -1 ¦ 210 bar. This instrument is available as a desktop or as a 19″ rack-mounting kit. It can have up to two reference pressure sensors and an optional barometer for displaying barometric pressure or be used to emulate gauge or absolute pressure. Since the CPC4000 offers an accuracy of up to 0.02 % IS-50, and controls pressure with a high stability, it is particularly suited as a production tool for transmitter manufacturing, a calibration and maintenance tool for pressure measuring instruments or as a factory/working standard for the calibration of all types of pressure measuring instruments. The leak test and burst test special applications allow CPC4000 to be used as a pressure line testing equipment. The optional automatic contamination prevention system make the CPC4000 an ideal solution in oil and gas plants. Maximum ease-of-use is achieved through the touchscreen and the simple and intuitive menu navigation. In addition, the large number of menu languages add to its operability. The instrument can have up to two internal pressure sensors and the ranges for each reference pressure sensor are determined by the customer within the allowable range. Depending on the application, the operator can choose between three set-point entry methods: Direct entry of the pressure value (set point) which will be controlled via touchscreen keypad. Define steps to reach the desired pressure value by either defining fixed pressure increments or a percentage of span value. User-defined programmable test sequences.
View Details
MBC5000/5100 Pressure Switch

MBC5000/5100 Pressure Switch

5297

The Danfoss MBC5000 pressure switch and Danfoss MBC5100 pressure switch are used in marine applications where space and reliability are essential features. According to their block design, the Danfoss MBC 5000 and MBC 5100 are compact pressure switches designed to survive in the harsh conditions known from machine rooms onboard ships. The Danfoss MBC pressure switches have a high vibration resistance and feature all commonly marine approvals. The fixed but low differential guarantees accurate monitoring of critical pressures. In addition, MBV test valves can be delivered as a standard option for MBC pressure switches.
View Details
VHS Flow Switch

VHS Flow Switch

7589

The SIKA VHS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS flow switch is available for various nominal widths and set-point ranges. The SIKA VHS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VHS09 Flow Switch

VHS09 Flow Switch

7600

The SIKA VHS09 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS09 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS09 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VHS06 Flow Switch

VHS06 Flow Switch

7604

The SIKA VHS06 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS06 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS06 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
VH0 Micro Flow Switch

VH0 Micro Flow Switch

7606

The SIKA VH0 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VH0 flow switch is available for various nominal widths and set-point ranges. The SIKA VH0 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks. Microswitch A microswitch used as a switching element allows a higher electrical switching capacity than a reed switch. The resetting force required by the paddle system is produced by a leaf spring.
View Details
VH3 Flow Switch

VH3 Flow Switch

7610

The SIKA VH3 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VH3 flow switch is available for various nominal widths and set-point ranges. The SIKA VH3 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
View Details
1 - 9 of 11