close
Categories
Filter By
Company
Connection Type
Medium Temperature
Pressure Range
- 0...0.6 bar 1
- 0...0.6 bar__0...40 bar 5
- 0...0.6 bar__0...40 bar__PN 16/40 or Class 150/300 1
- 0...1.000 bar 1
- 0...1.000 mbar 1
- 0...1 bar__0...10 bar 1
- 0...1 bar__0...25 bar 1
- 0...1 bar__0...40 bar 1
- 0...10.000 bar 1
- 0...10 bar__0...600 bar 1
- 0...16 bar 1
- 0...25 bar 3
- 0...40 bar 1
- 0...60 bar 4
- 0...100 bar 1
- 0...250 bar 1
- 0...400 bar 2
- 0...600 bar 9
- 0...700 bar 3
- 0...1000 bar 2
- 0...1600 bar 1
- 2...20 bar 1
- 10 bar 1
- 10 bar__6 bar__8 bar 6
- 20 bar 1
- 25 bar__40 bar 2
- 25 mbar 1
- 40...400 mbar 1
- 100 bar 1
- 250 bar 1
- 300 bar 1
- 350...400 bar 2
- -0.2...21 bar 1
- -0.2...400 bar 1
- -0.95...40 bar 1
- -0.95...60 bar 1
- -1...1 bar__0...2.000 bar 1
- -1...1 bar__0...2500 bar 1
- -1...2 bar__0...1000 bar 1
- -1...3 bar__0...700 bar 1
- -1...3 bar__0...1000 bar 1
- -1...10 bar__0...1000 bar 1
- -1...18 bar 1
- -1...60 bar 1
- -1...210 bar 2
- -1...250 bar 1
- -1...400 bar 1
- -1...1000 bar 1
- Corresponding to flange specification 1
- From 400 mbar depending on diameter of diaphragm 1
- PN 10 10
- PN 10 €“ 100; Class 150 - 600 1
- PN 16 8
- PN 25 5
- PN 50 2
0...0.6 bar, PN 25 - -1...10 bar__0...1000 bar
7 items

990.15 Flanged Process Connection Diaphragm Seal
2282
Together with a block flange or a saddle flange, the WIKA 990.15 diaphragm seal forms a perfectly matched system. Through the process connection via block flanges or saddle flanges, compact assemblies can be optimally realised at the measuring point. Depending on customer requirements, the model 990.15 can be subsequently integrated into a process using the accessory models 910.19, 910.20 and 910.23. The process connection is designed as a flange connection. The measuring instrument is in a vertical position. Applications Specifically for connection with block flange or saddle flange and to combine with bourdon tube pressure gauges Suitable for corrosive, contaminated, hot or viscous pressure media Chemical and petrochemical industry
- USD

C2 Digital Pressure Gauge
4889
The SIKA C2 digital pressure gauge is suitable for both stationary and mobile measurement and display of pressure. The SIKA C2 digital pressure gauge can be used as a reference to explain the checking, adjustment and calibration of other pressure measurement devices directly on-site. High accuracy in a signal acquisition is achieved by using high-performance measuring cells with electronic linearisation of the characteristic curve. Suitable instruments are available for a wide variety of measurement tasks. Ease of use is assured by innovative design and advanced technology. All essential functions for everyday use can be selected conveniently at the press of a button. Excellent protection against dust and moisture is provided by a membrane keypad or rubber buttons. Integrated supplementary functions make our digital pressure gauges true all-rounders. Display The large illuminated digital local display shows the measured pressure and indicates the current status of the digital pressure gauge, even under poor lighting conditions. This eliminates the difficult task of reading a dial gauge and avoiding parallax errors. Needle jitter due to vibration or pressure fluctuations is eliminated. Display damping or averaging can be configured directly using display filters. This ensures easy, tireless readout. Protection class High IP protection classes (IP67 (front) / IP67) are available to minimise dust and water sensitivity. Rugged, impact-resistant digital pressure gauges are fitted with rubber caps for protection during transport and field use. Battery operation / Auto-Off Power is supplied by long-life batteries (ordinary or rechargeable). An external AC adapter can also be used. To increase battery operating time, a Programmable Auto-Off function switches off the power to the instrument after prolonged inactivity. The electronics are designed for extremely low power consumption, which enables battery life of significantly more than 1500 hours.
- USD

VHS Flow Switch
7589
The SIKA VHS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS flow switch is available for various nominal widths and set-point ranges. The SIKA VHS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS09 Flow Switch
7600
The SIKA VHS09 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS09 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS09 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS06 Flow Switch
7604
The SIKA VHS06 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS06 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS06 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VH0 Micro Flow Switch
7606
The SIKA VH0 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VH0 flow switch is available for various nominal widths and set-point ranges. The SIKA VH0 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks. Microswitch A microswitch used as a switching element allows a higher electrical switching capacity than a reed switch. The resetting force required by the paddle system is produced by a leaf spring.
- USD

VH3 Flow Switch
7610
The SIKA VH3 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VH3 flow switch is available for various nominal widths and set-point ranges. The SIKA VH3 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD
1 - 7 of 7
1