close
Filter By
Company
Accuracy
Connection Type
Medium Temperature
Pressure Range
- 0...0.6 bar 1
- 0...0.6 bar__0...40 bar 5
- 0...0.6 bar__0...40 bar__PN 16/40 or Class 150/300 1
- 0...1.000 bar 1
- 0...1.000 mbar 1
- 0...1 bar__0...10 bar 1
- 0...1 bar__0...25 bar 1
- 0...1 bar__0...40 bar 1
- 0...10.000 bar 1
- 0...10 bar__0...600 bar 1
- 0...16 bar 1
- 0...25 bar 3
- 0...40 bar 1
- 0...60 bar 4
- 0...100 bar 1
- 0...250 bar 1
- 0...400 bar 2
- 0...600 bar 9
- 0...700 bar 3
- 0...1000 bar 2
- 0...1600 bar 1
- 2...20 bar 1
- 10 bar 1
- 10 bar__6 bar__8 bar 6
- 20 bar 1
- 25 bar__40 bar 2
- 25 mbar 1
- 40...400 mbar 1
- 100 bar 1
- 250 bar 1
- 300 bar 1
- 350...400 bar 2
- -0.2...21 bar 1
- -0.2...400 bar 1
- -0.95...40 bar 1
- -0.95...60 bar 1
- -1...1 bar__0...2.000 bar 1
- -1...1 bar__0...2500 bar 1
- -1...2 bar__0...1000 bar 1
- -1...3 bar__0...700 bar 1
- -1...3 bar__0...1000 bar 1
- -1...10 bar__0...1000 bar 1
- -1...18 bar 1
- -1...60 bar 1
- -1...210 bar 2
- -1...250 bar 1
- -1...400 bar 1
- -1...1000 bar 1
- Corresponding to flange specification 1
- From 400 mbar depending on diameter of diaphragm 1
- PN 10 10
- PN 10 €“ 100; Class 150 - 600 1
- PN 16 8
- PN 25 5
- PN 50 2
-1...60 bar, PN 25, 0...0.6 bar, -1...400 bar - -1...3 bar__0...700 bar
9 items

Pressure Calibration Kit
10898
The P4/P60 pneumatic hand test pump is designed to enable the direct connection of all pressure systems to be tested using adapters. The test sample is easily connected using the rugged industrial hose with integrated quick coupling and supplied adapters. The reference is fitted directly at the top of the pump using a positioning adapter. The required test pressure is initially generated using the handles and then adjusted precisely with the fine adjustment valve. As a result, the pressure on both instruments is the same. The pressure relief valve allows continuous pressure reduction and ensures accurate and easy testing, even with decreasing pressure. OEM version and full version Depending on the model a matching pressure hose is part of the basic configuration of the OEM version of the test pump. The hydraulic hoses are fitted with a self-sealing quick coupling. Inch, conical or metric adapters for all commonly used connection threads are available in the full version. A matching seal kit is also included with the pump. All of the equipment is held in a carrying case with a foam-rubber insert.
- USD

990.15 Flanged Process Connection Diaphragm Seal
2282
Together with a block flange or a saddle flange, the WIKA 990.15 diaphragm seal forms a perfectly matched system. Through the process connection via block flanges or saddle flanges, compact assemblies can be optimally realised at the measuring point. Depending on customer requirements, the model 990.15 can be subsequently integrated into a process using the accessory models 910.19, 910.20 and 910.23. The process connection is designed as a flange connection. The measuring instrument is in a vertical position. Applications Specifically for connection with block flange or saddle flange and to combine with bourdon tube pressure gauges Suitable for corrosive, contaminated, hot or viscous pressure media Chemical and petrochemical industry
- USD

D-Ex Digital Pressure Gauge
4877
The SIKA D-Ex digital pressure gauge is suitable for both stationary and mobile measurement and display of pressure. The SIKA D-Ex digital pressure gauge can be used as a reference to explain the checking, adjustment and calibration of other pressure measurement devices directly on-site. High accuracy in the signal acquisition is achieved by using high-performance measuring cells with electronic linearisation of the characteristic curve. Suitable instruments are available for a wide variety of measurement tasks. Ease of use is assured by innovative design and advanced technology. All essential functions for everyday use can be selected conveniently at the press of a button. Excellent protection against dust and moisture is provided by a membrane keypad or rubber buttons. Integrated supplementary functions make our digital pressure gauges true all-rounders. Tare / Zero-Function User-defined zero point setting at the push of a button makes offset adjustment easy and eliminates the need for tedious mechanical adjustment. Single-point adjustment allows the linear characteristic curve to be shifted in positive or negative direction over the entire measuring range. Selectable pressure units Another feature is the large selection of pressure units. Up to 6 different units are possible “ far more than any complicated dual-scale or multi-scale gauge can offer. The required display unit is selected directly on the digital pressure gauge and is indicated on display. No conversion necessary; the desired value can be read directly. Min / Max Displays and Peak function Experience shows that excess pressure and pressure peaks significantly higher than normal operating pressure occur at some measuring points. Min / max displays and fast peak value measurement cycles in digital pressure gauges assist in system analysis and allow peak values to be determined. This allows incorrect readings and violations of range limits to be detected and helps avoid damage to pressure systems. Preventive service is often less expensive than repairing or replacing defective instruments.
- USD

VHS Flow Switch
7589
The SIKA VHS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS flow switch is available for various nominal widths and set-point ranges. The SIKA VHS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS09 Flow Switch
7600
The SIKA VHS09 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS09 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS09 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS06 Flow Switch
7604
The SIKA VHS06 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS06 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS06 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VH0 Micro Flow Switch
7606
The SIKA VH0 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VH0 flow switch is available for various nominal widths and set-point ranges. The SIKA VH0 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks. Microswitch A microswitch used as a switching element allows a higher electrical switching capacity than a reed switch. The resetting force required by the paddle system is produced by a leaf spring.
- USD

VH3 Flow Switch
7610
The SIKA VH3 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VH3 flow switch is available for various nominal widths and set-point ranges. The SIKA VH3 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

CPC8000 Mensor Pressure Controller
8235
The WIKA CPC8000 Mensor pressure controller is a premium accuracy instrument suitable as a calibration solution for various applications. Its outstanding control performance is particularly impressive, thanks to special, patented valve technology and the specific pressure sensor as a measuring unit. With this the WIKA CPC8000 Mensor pressure controller is suitable as a factory or working standard for the testing or calibration of any type of pressure measuring instrument. The WIKA CPC8000 is available as a desktop instrument or as a 19″ rack-mounted kit. The sensors can be changed via the front, without taking out the complete controller (e.g. out of a calibration rig). Maximum ease-of-use of the WIKA CPC8000 Mensor pressure controller is achieved through the large touchscreen and the simple and intuitive menu navigation. In addition, its operability is further supported by the availability of a large number of menu languages. On the large touchscreen, all necessary information such as current measured value and set point can be found on a single screen. Optionally, the measured values can be displayed in other pressure units. The WIKA CPC8000 Mensor pressure controller can be remotely controlled via serial interfaces available. Through these, a wide range of emulation command sets for other pressure controllers is available. The controller has an IEEE-488.2, RS-232, USB and an Ethernet interface for communication with other instruments, and thus the instrument can be integrated into existing systems.
- USD
1 - 9 of 9
1