close
Categories
Filter By
Company
Accuracy
Ambient Temperature
Connection Type
Material Spec
Medium Temperature
Nominal Size
Pressure Range
- 0...0.6 bar 1
- 0...0.6 bar__0...40 bar 5
- 0...0.6 bar__0...40 bar__PN 16/40 or Class 150/300 1
- 0...1.000 bar 1
- 0...1.000 mbar 1
- 0...1 bar__0...10 bar 1
- 0...1 bar__0...25 bar 1
- 0...1 bar__0...40 bar 1
- 0...10.000 bar 1
- 0...10 bar__0...600 bar 1
- 0...16 bar 1
- 0...25 bar 3
- 0...40 bar 1
- 0...60 bar 4
- 0...100 bar 1
- 0...250 bar 1
- 0...400 bar 2
- 0...600 bar 9
- 0...700 bar 3
- 0...1000 bar 2
- 0...1600 bar 1
- 2...20 bar 1
- 10 bar 1
- 10 bar__6 bar__8 bar 6
- 20 bar 1
- 25 bar__40 bar 2
- 25 mbar 1
- 40...400 mbar 1
- 100 bar 1
- 250 bar 1
- 300 bar 1
- 350...400 bar 2
- -0.2...21 bar 1
- -0.2...400 bar 1
- -0.95...40 bar 1
- -0.95...60 bar 1
- -1...1 bar__0...2.000 bar 1
- -1...1 bar__0...2500 bar 1
- -1...2 bar__0...1000 bar 1
- -1...3 bar__0...700 bar 1
- -1...3 bar__0...1000 bar 1
- -1...10 bar__0...1000 bar 1
- -1...18 bar 1
- -1...60 bar 1
- -1...210 bar 2
- -1...250 bar 1
- -1...400 bar 1
- -1...1000 bar 1
- Corresponding to flange specification 1
- From 400 mbar depending on diameter of diaphragm 1
- PN 10 10
- PN 10 €“ 100; Class 150 - 600 1
- PN 16 8
- PN 25 5
- PN 50 2
-0.2...21 bar, -1...1 bar__0...2.000 bar, 0...10.000 bar, 0...16 bar - PN 25
9 items

CPG 1500 Digital Pressure Gauge
2776
The WIKA CPG1500 precision digital pressure gauge takes the concept of an analogue gauge and raises it to a level only matched by digital calibrators. The accuracy of digital measurement technology and the simplicity of an analogue gauge are combined to create the digital pressure gauge CPG1500, which in terms of performance, ease-of-use, and instrument features, is unmatched in the pressure measurement market. The WIKA CPG1500 offers an accuracy of 0.1 % FS (optional 0.05 % FS or 0.025 % FS) and is temperature-compensated in the range of -10 ¦ +50 °C (14 … 122 °F). Readings can be displayed in one of 26 pressure and 5 level units or also in customer-specific units, so that intricate conversion is avoided. The measuring rate can be user-defined to match the type of measurement required. Standard applications usually use three measured values per second. If required, this rate can also be set to 50 measured values per second. Via an energy-saving function, the CPG1500 switches automatically into œsleep mode, in this mode, the battery life can be increased up to 2,500 hours. Through the new and innovative menu navigation, simple operation is ensured. The clear display, with integral bar graph display and large text area, assists with the effective analysis of the widest variety of measuring points. With the MIN/MAX function, the highest and lowest pressures can be accessed immediately and saved automatically.
- USD

100.0x / 100.1x Bimetall-Thermomanometer
3298
The WIKA 100.1, 100.2, 100.10 and 100.12 thermomanometer with a bimetal system is fitted directly at the measuring point via a stem. The valve allows the measuring instrument to be unscrewed without having to empty the heating system first. Due to the combination of a pressure gauge and a bimetal thermometer the instrument can be used flexibly in a wide variety of applications. The WIKA thermomanometer with bimetal system is fitted directly at the measuring point via a stem. The valve allows the measuring instrument to be unscrewed without having to empty the heating system first. Due to the combination of a pressure gauge and a bimetal thermometer the instrument can be used flexibly in a wide variety of applications
- USD

Digital Pressure Gauge Type J
4892
The SIKA Type J digital pressure gauge is suitable for both stationary and mobile measurement and display of pressure. The SIKA Type J digital pressure gauge can be used as a reference to explain the checking, adjustment and calibration of other pressure measurement devices directly on-site. PC connection and software Many digital pressure gauges have a serial interface port to allow measurement values and stored data to be transferred directly to a PC and documented. An inexpensive measurement data acquisition system can easily be assembled with suitable software and an interface converter. Processes can be readily monitored and analysed using the recorded and visualised measurements, and all data can be exported using standard programs such as Microsoft Excel. Remote control is also possible. Various software packages with extensive recording and display functions, logger and alarm evaluation as well as for calibration are available. Analogue output An electrical output signal enables remote display on a control console or in a control room as well as the connection of external recorders and indicating instruments. Relay output Digital pressure gauges allow limit contacts to be closed even at low pressures. There is no need for high actuation forces for magnetic spring or inductive contacts, which makes it easier to signal critical equipment conditions and perform supplementary control tasks.
- USD

KP Pressure Switch
5288
The Danfoss KP pressure switches are used for regulating, monitoring and alarm systems in the industry. The KP pressure switches provide automatic limit protection or manual reset limit protection for pressure systems. The KP switches can be used with steam, air, gaseous and liquid media. The pressure switches are fitted with a single-pole changeover switch (SPDT). The position of the switch depends on the setting of the pressure switch and the pressure in the connector. Available types: KP 34 pressure switch KP 35 pressure switch KP 36 pressure switch KP 37 pressure switch KP 44 pressure switch
- USD

VHS Flow Switch
7589
The SIKA VHS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS flow switch is available for various nominal widths and set-point ranges. The SIKA VHS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS09 Flow Switch
7600
The SIKA VHS09 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS09 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS09 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS06 Flow Switch
7604
The SIKA VHS06 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS06 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS06 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VH0 Micro Flow Switch
7606
The SIKA VH0 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VH0 flow switch is available for various nominal widths and set-point ranges. The SIKA VH0 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks. Microswitch A microswitch used as a switching element allows a higher electrical switching capacity than a reed switch. The resetting force required by the paddle system is produced by a leaf spring.
- USD

VH3 Flow Switch
7610
The SIKA VH3 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VH3 flow switch is available for various nominal widths and set-point ranges. The SIKA VH3 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD
1 - 9 of 9
1