close
Categories
Filter By
Company
Accuracy
Ambient Temperature
Connection Type
Flow Rate (l/min)
Medium Temperature
- 0...20°C__0...60°C 1
- 0...50 °C 3
- 0...85°C 2
- 0...90°C 1
- 0...90°C__95°C 2
- 2€°200°C__ 150°C 1
- 5...60°C 1
- 10...100°C 1
- 30...100°C 2
- 60°C 7
- 80°C 2
- 120°C__30...100°C 1
- 200°C 1
- 200°C__Max. 100°C 4
- -10€°160°C 1
- -10...50°C 3
- -10...60°C 5
- -10...70 °C 1
- -10...90°C 5
- -10...120°C 1
- -20°200°C 1
- -20...60°C 1
- -20...70°C 1
- -20...70°C__0...70°C 1
- -20...80°C 3
- -20...85°C 1
- -20...90°C 3
- -20...100°C 3
- -20...110°C 1
- -20...130°C__-20...150°C 1
- -20...150°C 3
- -25...100°C 5
- -25...100°C__0...20°C 1
- -25...110°C 3
- -30...60°C 1
- -30...85°C 1
- -30...150°C 5
- -30...200°C 1
- -40°80°C 2
- -40...75°C 1
- -40...85°C 1
- -40...100°C 4
- -40...110°C 1
- -40...120°C 2
- -40...125°C 1
- -50°180°C 3
- Max. 60°C 4
- Max. 85°C 5
- Max. 100°C 17
- Max. 100°C__Max. 200°C 1
- Max. 110°C 3
- Max. 115°C 1
- Max. 120°C 1
- Max. 125°C  1
- Max. 150°C 1
- Max. 200°C 5
- O-Ring FKM: -15°C...150°C__O-Ring NBR: -30°C...100° 1
- see sealing material 1
Max. 85°C - 10...100°C
6 items

990.30 Sterile Connection Diaphragm Seal
7094
The WIKA 990.30 diaphragm seal is a unique development for homogeniser machines in sanitary applications. This diaphragm seal is available with process connections in various designs and is thus suitable for all common measuring points. The diaphragm seal systems ensure reliable measurements, even with high loading through vibrations and pressure spikes. Mounting of the diaphragm seal to the measuring instrument may be made via a direct connection or a flexible capillary. For the material selection, WIKA offers a variety of solutions, in which the upper body of the diaphragm seal and the wetted parts can be made of identical or different materials.
- USD

VTM 40 Turbine Flow Sensor
7803
The SIKA VTM 40 turbine flow sensor is made for flow measurement or dosing applications for liquids. Because of the very compact design, the extensive measuring range and the convincing precision of measurements, almost unlimited applications are possible. The sturdy bearing materials – sapphire and tungsten carbide – also guarantee an exceptionally long endurance. The liquid flowing into the SIKA VTM 40 turbine flow sensor is split into individual jets by the guiding blade. These jets hit the rotor evenly from different directions, setting the rotor in motion. The rotation speed of the rotor is then converted to an electrical pulse signal (frequency): The rotor is fitted with magnets and a Hall effect sensor detects the rotation of the rotor. A flow-proportional frequency signal (square-wave signal) is made available. The construction of the guiding blade and rotor enables to realize the very low start-up flow values.
- USD

VTH 40 Turbine Flow Sensor
7805
The SIKA VTH 40 turbine flow sensor is made for flow measurement or dosing applications for liquids. Because of the very compact design, the extensive measuring range and the convincing precision of measurements, almost unlimited applications are possible. The sturdy bearing materials – sapphire and tungsten carbide – also guarantee an exceptionally long endurance. The liquid flowing into the SIKA VTH 40 turbine flow sensor is split into individual jets by the guiding blade. These jets hit the rotor evenly from different directions, setting the rotor in motion. The rotation speed of the rotor is then converted to an electrical pulse signal (frequency): The rotor is fitted with magnets and a Hall effect sensor detects the rotation of the rotor. A flow-proportional frequency signal (square-wave signal) is made available. The construction of the guiding blade and rotor enables to realize the very low start-up flow values.
- USD

VTM 25 Turbine Flow Sensor
7807
The SIKA VTM 25 turbine flow sensor is made for flow measurement or dosing applications for liquids. Because of the very compact design, the extensive measuring range and the convincing precision of measurements, almost unlimited applications are possible. The sturdy bearing materials – sapphire and tungsten carbide – also guarantee an exceptionally long endurance. The liquid flowing into the SIKA VTM 25 turbine flow sensor is split into individual jets by the guiding blade. These jets hit the rotor evenly from different directions, setting the rotor in motion. The rotation speed of the rotor is then converted to an electrical pulse signal (frequency): The rotor is fitted with magnets and a Hall effect sensor detects the rotation of the rotor. A flow-proportional frequency signal (square-wave signal) is made available. The construction of the guiding blade and rotor enables to realize the very low start-up flow values.
- USD

VTI 15 Turbine Flow Sensor
7819
The SIKA VTI 15 turbine flow sensor is made for flow measurement or dosing applications for liquids. Because of the very compact design, the extensive measuring range and the convincing precision of measurements, almost unlimited applications are possible. The sturdy bearing materials – sapphire and tungsten carbide – also guarantee an exceptionally long endurance. The liquid flowing into the SIKA VTI 15 turbine flow sensor is split into individual jets by the guiding blade. These jets hit the rotor evenly from different directions, setting the rotor in motion. The rotation speed of the rotor is then converted to an electrical pulse signal (frequency): The rotor is fitted with magnets and a Hall effect sensor detects the rotation of the rotor. A flow-proportional frequency signal (square-wave signal) is made available. The construction of the guiding blade and rotor enables to realize the very low start-up flow values.
- USD

VTH 15 Turbine Flow Sensor
7825
The SIKA VTH 15 turbine flow sensor is made for flow measurement or dosing applications for liquids. Because of the very compact design, the extensive measuring range and the convincing precision of measurements, almost unlimited applications are possible. The sturdy bearing materials – sapphire and tungsten carbide – also guarantee an exceptionally long endurance. The liquid flowing into the SIKA VTH 15 turbine flow sensor is split into individual jets by the guiding blade. These jets hit the rotor evenly from different directions, setting the rotor in motion. The rotation speed of the rotor is then converted to an electrical pulse signal (frequency): The rotor is fitted with magnets and a Hall effect sensor detects the rotation of the rotor. A flow-proportional frequency signal (square-wave signal) is made available. The construction of the guiding blade and rotor enables to realize the very low start-up flow values.
- USD
1 - 6 of 6
1