close
Filter By
Company
Accuracy
Ambient Temperature
Medium Temperature
- 0...20°C__0...60°C 1
- 0...50 °C 3
- 0...85°C 2
- 0...90°C 1
- 0...90°C__95°C 2
- 2€°200°C__ 150°C 1
- 5...60°C 1
- 10...100°C 1
- 30...100°C 2
- 60°C 7
- 80°C 2
- 120°C__30...100°C 1
- 200°C 1
- 200°C__Max. 100°C 4
- -10€°160°C 1
- -10...50°C 3
- -10...60°C 5
- -10...70 °C 1
- -10...90°C 5
- -10...120°C 1
- -20°200°C 1
- -20...60°C 1
- -20...70°C 1
- -20...70°C__0...70°C 1
- -20...80°C 3
- -20...85°C 1
- -20...90°C 3
- -20...100°C 3
- -20...110°C 1
- -20...130°C__-20...150°C 1
- -20...150°C 3
- -25...100°C 5
- -25...100°C__0...20°C 1
- -25...110°C 3
- -30...60°C 1
- -30...85°C 1
- -30...150°C 5
- -30...200°C 1
- -40°80°C 2
- -40...75°C 1
- -40...85°C 1
- -40...100°C 4
- -40...110°C 1
- -40...120°C 2
- -40...125°C 1
- -50°180°C 3
- Max. 60°C 4
- Max. 85°C 5
- Max. 100°C 17
- Max. 100°C__Max. 200°C 1
- Max. 110°C 3
- Max. 115°C 1
- Max. 120°C 1
- Max. 125°C  1
- Max. 150°C 1
- Max. 200°C 5
- O-Ring FKM: -15°C...150°C__O-Ring NBR: -30°C...100° 1
- see sealing material 1
Pressure Range
Switching Function
-25...110°C - -40...75°C
4 items

E-10 / E-11 Pressure Transmitter
3067
The WIKA E-10 and E-11 flameproof pressure transmitters have been designed specifically for the high demands of industrial oil and gas applications. These pressure transmitters can be delivered with various analogue signals from 4 … 20 mA to a low-power version with DC 1 … 5 V. They feature exceptionally high resistance to vibration, pressure spikes and moisture ingress. Furthermore, these pressure transmitters fulfil IP 67 (NEMA 4x) ingress protection. On each instrument, comprehensive quality control and calibration is performed, so that an accuracy of 0.5 % can be ensured. Temperature compensation guarantees accuracy and long-term stability, even with strong fluctuations in the ambient temperature. The WIKA E-10 and E-11 are suitable for sour gas applications and feature particularly high resistance against sulphide stress cracking when in contact with sulphurous gases. The pressure transmitters are approved as œexplosion-proof for class I, II, III, div. 1 hazardous areas to FM and CSA as well as œflameproof for II 2 G Ex d II C to ATEX.
- USD

VHS Flow Switch
7589
The SIKA VHS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS flow switch is available for various nominal widths and set-point ranges. The SIKA VHS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS09 Flow Switch
7600
The SIKA VHS09 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS09 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS09 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS06 Flow Switch
7604
The SIKA VHS06 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS06 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS06 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD
1 - 4 of 4
1