close
Filter By
Company
Ambient Temperature
Connection Type
Medium Temperature
Switching Function
Temperature Range
Switches
15 items

VH500 Paddle Flow Switch
1035
The SIKA VH500 paddle flow switch is modelled for applications such as cooling water monitoring, leak monitoring, and lubrication control. The SIKA VH 500 is placed with its paddle in flowing medium, which triggers the paddle. The resulting dynamic pressure causes the paddle to travel, which causes the actuation of integrated micro switches. SIKA flow switches monitor the flow of low-viscosity media in pipes. They offer a reliable solution for ensuring the minimum flow rate and thereby protecting high-quality systems and installations from damages. These flow switches work based on the well- established mechanical operating principles. Thanks to the different paddle lengths, the switch points of the paddle flow switches can be configured for a wide switching range.
- USD

VHS Flow Switch
7589
The SIKA VHS flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS flow switch is available for various nominal widths and set-point ranges. The SIKA VHS flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VH780 Flow Switch
7590
The SIKA VH780 flow switch monitors the flow of low-viscosity media in pipes. The SIKA VH780 offers a reliable solution for ensuring the minimum flow rate and thereby protecting high-quality systems and installations from damages. These flow switches work based on the well- established mechanical operating principles. Thanks to the different paddle lengths, the switch points of the paddle flow switches can be configured for a wide switching range. The flowing medium hits the plate secured to the end of a paddle. The resulting dynamic pressure causes the paddle to travel. This, in turn, causes the actuation of a micro switch. The flowing medium hits the plate secured to the end of a paddle. The resulting dynamic pressure causes the paddle to travel. This, in turn, causes the actuation of a micro switch.
- USD

VH501 Flow Switch
7592
The SIKA VH501 flow switch monitors the flow of low-viscosity media in pipes. The SIKA VH501 offers a reliable solution for ensuring the minimum flow rate and thereby protecting high-quality systems and installations from damages. These flow switches work based on the well- established mechanical operating principles. Thanks to the different paddle lengths, the switch points of the paddle flow switches can be configured for a wide switching range. The flowing medium hits the plate secured to the end of a paddle. The resulting dynamic pressure causes the paddle to travel. This, in turn, causes the actuation of a micro switch. The flowing medium hits the plate secured to the end of a paddle. The resulting dynamic pressure causes the paddle to travel. This, in turn, causes the actuation of a micro switch.
- USD

VKX15 OEM Flow Switch
7594
The SIKA VKX05 OEM flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VKX05 OEM flow switch is available for various nominal widths and set-point ranges. The SIKA VKX05 OEM flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VK3 Flow Switch
7596
The SIKA VK3 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK3 flow switch is available for various nominal widths and set-point ranges. The SIKA VK3 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VK309 Flow Switch
7598
The SIKA VK309 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK309 flow switch is available for various nominal widths and set-point ranges. The SIKA VK309 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VHS09 Flow Switch
7600
The SIKA VHS09 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VHS09 flow switch is available for various nominal widths and set-point ranges. The SIKA VHS09 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD

VK306 Flow Switch
7602
The SIKA VK306 flow switches are used for monitoring volume flows. Depending on conditions, the SIKA VK306 flow switch is available for various nominal widths and set-point ranges. The SIKA VK306 flow switch contains a paddle system to whose end a permanent magnet is attached. Above this magnet is a reed contact, located outside the flow of fluid. A second magnet creates the force necessary to reset the switch back to the no-flow position. When the flow being monitored pushes against the paddle system, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the connection. As soon as the flow is interrupted, the paddle moves back to its starting position, thus activating the reed contact once again. The force necessary to push the magnet back is provided by the two magnets repelling each other. Using magnetic force instead of the usual leaf spring means that the switch is considerably more stable in the long term and much less sensitive to pressure peaks.
- USD